Broadband Epsilon-Near-Zero (ENZ) and Mu-Near-Zero (MNZ) Active Metamaterial
نویسندگان
چکیده
منابع مشابه
Roles of epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials in optical metatronic circuit networks.
The concept of metamaterial-inspired nanocircuits, dubbed metatronics, was introduced in [Science 317, 1698 (2007); Phys. Rev. Lett. 95, 095504 (2005)]. It was suggested how optical lumped elements (nanoelements) can be made using subwavelength plasmonic or non-plasmonic particles. As a result, the optical metatronic equivalents of a number of electronic circuits, such as frequency mixers and f...
متن کاملIntegrated optical devices based on broadband epsilon-near-zero meta-atoms.
We verify the feasibility of the proposed theoretical strategy for designing the broadband near-zero permittivity (ENZ) metamaterial at optical frequency range with numerical simulations. In addition, the designed broadband ENZ stack is used as meta-atoms to build functional nanophotonic devices with extraordinary properties, including an ultranarrow electromagnetic energy tunneling channel and...
متن کاملOptically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials
Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we ...
متن کاملNear - zero refractive index photonics
The control and manipulation of light on the nanoscale — the primary aim of nanophotonics — is of fundamental scientific interest and plays a key role in telecommunication technologies and energy management. Yet, because light–matter interactions are usually weak and hard to confine, they often need to be assisted by the use of suitably designed macroscopic media. For instance, the use of caref...
متن کاملTunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials.
In this Letter, we demonstrate theoretically that electromagnetic waves can be "squeezed" and tunneled through very narrow channels filled with epsilon-near-zero (ENZ) materials. We show that the incoming planar wave front is replicated at the output interface, independently of the specific geometry of the channel. A closed analytical formula is derived for the scattering parameters of a partic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011